Design dan Implementasi Buck Chopper-PMSG Terkendali Tegangan Keluaran Berbasis STM32VET407
Abstract
Pembangkit energi angin dapat digunakan sebagai sumber listrik alternatif dan jika dikembangkan dengan baik maka energi tipe ini mampu menjadi penopang energi nasional. Pemanfaatan energi angin yang diintegrasikan dengan Permanent Magnet Synchronous Generator (PMSG) dapat menghasilkan listrik AC 3 Fasa. Besaran listrik ini memiliki tegangan dan frekuensi yang tidak konstan serta pada kasus ini bertegangan relatif kecil. Guna mendapatkan tegangan listrik yang stabil lazimnya dilakukan manipulasi: disearahkan dan dijaga tegangan DC konstan kemudian diubah ke tegangan AC sesuai standar PLN dengan menggunakan inverter. Pada tulisan ini membahas proses mendapatkan tegangan DC yang stabil walau terjadi perubahan kecepatan pada PMSG yang dilakukan dengan menggunakan Buck Chopper yang dikendalikan dengan mikrokontroler STM32VET407. Verifikasi awal dilakukan dengan simulasi komputasi dan tahap akhir dilakukan implementasi perangkat keras di laboratorium. Dari hasill simulasi dan implementasi sistem dapat beroperasi dengan baik dengan tegangan keluaran stabil dinilai 60 Volt
References
[2] M. F. Elmorshedy, S. M. Allam, and E. M. Rashad, “Load voltage control and maximum power extraction of a stand-alone wind-driven PMSG including unbalanced operating conditions,” 2016 18th Int. Middle-East Power Syst. Conf. MEPCON 2016 - Proc., pp. 552–559, 2017, doi: 10.1109/MEPCON.2016.7836946.
[3] L. Bisenieks, D. Vinnikov, and I. Galkin, “New isolated interface converter for grid-connected PMSG based wind turbines,” 2011 10th Int. Conf. Environ. Electr. Eng. EEEIC.EU 2011 - Conf. Proc., pp. 1–4, 2011, doi: 10.1109/EEEIC.2011.5874750.
[4] R. I. Putri, S. Adhisuwignjo, and M. Rifari, “Design of simple power converter for small scale wind turbine system for battery charger,” Proc. - 2018 3rd Int. Conf. Inf. Technol. Inf. Syst. Electr. Eng. ICITISEE 2018, pp. 169–173, 2018, doi: 10.1109/ICITISEE.2018.8721018.
[5] A. Asri, Y. Mihoub, S. Hassaine, P. O. Logerais, and T. Allaoui, “Intelligent maximum power tracking control of a PMSG wind energy conversion system,” Asian J. Control, vol. 21, no. 4, pp. 1980–1990, Jul. 2019, doi: 10.1002/ASJC.2090.
[6] D. Simonetti, T. Freitas, P. Menegáz, and J. Fardin, “Theoretical analysis of a multiresonant zero-current switching buck converter applied to low wind power PMSG,” IET Conf. Publ., vol. 2014, no. CP651, pp. 1–5, 2014, doi: 10.1049/cp.2014.0865.
[7] V. Lazarov, D. Roye, D. Spirov, and Z. Zarkov, “New control strategy for variable speed wind turbine with DC-DC converters,” Proc. EPE-PEMC 2010 - 14th Int. Power Electron. Motion Control Conf., pp. 120–124, 2010, doi: 10.1109/EPEPEMC.2010.5606570.
[8] L. Sartika, M. Rosyadi, A. Umemura, R. Takahashi, and J. Tamura, “Stabilization of PMSG based wind turbine under network disturbance by using new buck controller system for DC-link protection,” IET Conf. Publ., vol. 2016, no. CP694, pp. 1–5, 2016, doi: 10.1049/cp.2016.0578.
[9] T. H. Nguyen and D. C. Lee, “A novel current control scheme of grid converters for small PMSG wind turbines under grid voltage distortion,” PEMWA 2012 - 2012 IEEE Power Electron. Mach. Wind Appl., 2012, doi: 10.1109/PEMWA.2012.6316368.
[10] A. Belkaid, I. Colak, K. Kayisli, and R. Bayindir, “Indirect Sliding Mode Voltage Control of Buck Converter,” 8th Int. Conf. Smart Grid, icSmartGrid 2020, no. 2, pp. 90–95, 2020, doi: 10.1109/icSmartGrid49881.2020.9144974.
[11] S. Palanidoss and T. V. S. Vishnu, “Experimental analysis of conventional buck and boost converter with integrated dual output converter,” Int. Conf. Electr. Electron. Commun. Comput. Technol. Optim. Tech. ICEECCOT 2017, vol. 2018-Janua, pp. 323–329, 2018, doi: 10.1109/ICEECCOT.2017.8284521.
[12] Y. Li, H. Liu, Y. Chi, X. Fan, X. Tian, and Z. Zhang, “Requirement Analysis on Large-scale Renewable Energy DC Collection and Transmission Technology,” 2020 4th Int. Conf. HVDC, HVDC 2020, pp. 410–414, 2020, doi: 10.1109/HVDC50696.2020.9292827.
[13] Y. Mori, K. Matsui, M. Hasegawa, F. Ueda, and H. Mori, “A novel PFC buck chopper for single-phase with single switching device,” Proc. - 12th Int. Conf. Electr. Mach. Syst. ICEMS 2009, pp. 1–6, 2009, doi: 10.1109/ICEMS.2009.5382953.
[14] M. K. Asy’Ari, A. Musyafa’, and K. Indriawati, “Design of Wind Turbine Output Voltage Control Systems in Multi-Input Buck Converter Using Fuzzy Logic Control for Battery Charging,” 2019 Int. Conf. Adv. Mechatronics, Intell. Manuf. Ind. Autom. ICAMIMIA 2019 - Proceeding, pp. 249–252, 2019, doi: 10.1109/ICAMIMIA47173.2019.9223417.
[15] Z. Qiji, D. Liang, P. Kou, and Z. Liang, “Dual Closed-loop Control of a Doubly Salient Permanent Magnet Generator based on Gain- Scheduling PI Controller,” 2017.
[16] G. El-Saady, E. N. A. Ibrahim, and M. Gelany, “Voltage regulation of stand-alone variable speed wind energy system,” 2016 18th Int. Middle-East Power Syst. Conf. MEPCON 2016 - Proc., no. 1, pp. 360–366, 2017, doi: 10.1109/MEPCON.2016.7836916.
[17] S. Dong, H. Li, and Y. Wang, “Low voltage ride through capability enhancement of PMSG-based wind turbine,” IET Conf. Publ., vol. 2012, no. 611 CP, 2012, doi: 10.1049/cp.2012.1784.
[18] H. M. Yassin, H. H. Hanafy, and M. M. Hallouda, “Design and implementation of PI controllers of direct drive PMSG wind turbine system tuned by Linearized biogeography-based optimization technique,” IECON Proc. (Industrial Electron. Conf., pp. 4072–4077, 2016, doi: 10.1109/IECON.2016.7793375.